

Quality Assurance Process Affects Breast Cancer Screening Performance

Yan Yuan, PhD Assistant Professor School of Public Health 2017 CAHSPR Conference

Introduction

- Mammogram to screen breast cancer started in 1980
- Variable performance

Per 1000 screens

	False positive	Cancer detection	
US	~90	4.3	
EU	<50	5.0	
Canada	~70	4.7	

Decision balance

Breast Cancer Screening in Alberta

Alberta Breast Cancer Screening Program (ABCSP)

Started 2008

Screen Test

- Two clinics: Edmonton, Calgary.
- Mobile units visit rural/remote communities
- Interpreted by sessional radiologists in Edmonton

Radiologists in Private Practices

Spread through province

Research Question

 Does the screening performance differ between the two service providers, namely ST and private practices?

Performance Indicators

Abnormal call rate

Cancer detection rate

False positive rate

Positive predictive value

Post-screen cancer rate

Time to re-screen

Study Design and Databases

- Databases
 - Screen Test data (ST)
 - Physician claims data (Private)
 - fee-for-service private practice.
 - Alberta Cancer Registry data
 - exclude women with previous breast cancer diagnosis
 - identify cancer diagnosis

Alberta women, 50-69 years of age, screen mammograms in Study period A: 2006.7.1-2008.6.30 (before ABCSP) or Study period B: 2008.7.1-2010.6.30 (after ABCSP)

Rates of Abnormal Call, Cancer Detection and False Positive

06-08 08-10

Private

Post-screen Invasive Cancer Rate

After a benign screening episode between 7/2006 and 6/2008, per 10,000 person-years.

Interval	Provider	N*	Rate (95% CI)	Rate ratio (95% CI)	P value
0-24	ST	26	5.3 (3.6-7.8)	0.46	0.0002
months	Private	260	11.4 (10.1-12.9)	(0.31-0.70)	

* Number of post-screen invasive cancer

Time to Re-screen

Time to rescreen (month)

Screening Performance Better in ST Comparing to Private Practices

- Lower abnormal calls
- Higher cancer detection
- Lower false positive
- Higher positive predictive value
- Less post-screen invasive cancer
- Longer time to return visits

Discussion

- ST performance similar to the European Union standard.
 - Limit false positives to < 50 per 1000 screens
- Performance in private practices similar to US study reports.

Why? – Quality Assurance

- Screen Test
 - Radiologists interpret screen mammograms in batches
 - Monthly quality assurance meeting to receive recall stats and to review cases together
 - Reading volume >2000/year
- Private practices
 - Management practice varies, may not provide recall stats
 - Many clinics interpret the image right away to decide whether further test is needed
 - Amongst other images
 - Accreditation criteria: reading volume >400/year (in the study period)
 - Some radiologists only started reading after 2004

Recommendations

- Must ensure quality of screen in practice to penefit and parm
- Further study of quality assurance is needed in programs across Canada
- Implementation of health technology requires oversight and evaluation

Acknowledgement

Collaborators

- Ye Shen, MPH
- Vickey Bu, MSc.
- Marcy Winget PhD
- James Dickinson MB PhD
- Radiologists (anonymous)

Assistance

- Aslam Bhatti
- Bob Sadler
- Heidi Robinson

women & children's

health research institute